
Scheduling DAGs on Asynchronous Processors
Michael A. Bender∗

Department of Computer Science
Stony Brook University

Stony Brook, NY 11794-4400, USA
bender@cs.sunysb.edu

Cynthia A. Phillips†
Discrete Algorithms and Math Department

Sandia National Laboratories
Albuquerque, NM, USA
caphill@sandia.gov

ABSTRACT
This paper addresses the problem of scheduling a DAG of
unit-length tasks on asynchronous processors, that is, pro-
cessors having different and changing speeds. The objec-
tive is to minimize the makespan , that is, the time to exe-
cute the entire DAG. Asynchrony is modeled by an oblivi-
ous adversary , which is assumed to determine the proces-
sor speeds at each point in time. The oblivious adversary
may change processor speeds arbitrarily and arbitrarily of-
ten, but makes speed decisions independently of any random
choices of the scheduling algorithm.

This paper gives bounds on the makespan of two ran-
domized online firing-squad scheduling algorithms, All
and Level. These two schedulers are shown to have good
makespan even when asynchrony is arbitrarily extreme. Let
W and D denote, respectively, the number of tasks and the
longest path in the DAG, and let πave denote the average
speed of the p processors during the execution.

In All each processor repeatedly chooses a random task
to execute from among all ready tasks (tasks whose pre-
decessors have been executed). Scheduler All is shown to
have a makespan Tp =

• Θ

„
W

pπave

«
, when

W
D

≥ p log p

• Θ

„
(log p)α W

pπave
+ (log p)1−α D

πave

«
,

when
W
D

= p(log p)1−2α, for α ∈ [0, 1]

• Θ

„
D

πave

«
, when

W
D

≤ p
log p

,

both expected and with high probability. A family of DAGs
is exhibited for which this analysis is tight.

In Level each of the processors repeatedly chooses a ran-
dom task to execute from among all critical tasks (ready

∗Supported in part by NSF Grants CCF-0621439/0621425,
CCF-0540897/05414009, CCF-0634793/0632838, and CNS-
0627645.
†Sandia is a multipurpose laboratory operated by Sandia
Corporation, a Lockheed-Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Copyright 2007 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
SPAA’07, June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

tasks at the lowest level of the DAG). This second scheduler
is shown to have a makespan of

Tp = Θ

„
W

pπave
+ [log∗ p − log∗(pD/W)]

D
πave

«
,

both expected and with high probability. Thus, Level is al-
ways at least as good as All asymptotically, and sometimes
better.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems – Sequencing
and Scheduling

General Terms
Algorithms, Theory

Keywords
Asynchronous parallel computing, online scheduling, firing-
squad scheduling, precedence-constrained scheduling

1. INTRODUCTION
We consider the problem of executing irregularly-structured
(e.g., multithreaded) parallel programs on asynchronous
processors, that is, processors running at different and chang-
ing speeds. Asynchrony can occur in any setting in which
parallel resources are shared. For example, in grid com-
puting, a remote user of a machine may have significantly
reduced privileges compared to the machine owner, and the
remote user’s job may run sluggishly when the owner returns
to a machine. In server farms, users with similar privileges
must share the resources, so a machine’s instantaneous speed
for a user depends on current load.

We show how to achieve asymptomatically good perfor-
mance bounds under arbitrarily extreme asynchrony. We
assume that processors can run arbitrarily slowly, down to
speed zero, and arbitrarily fast. Processor can change speeds
arbitrarily frequently. Since the asynchrony can be adversar-
ially extreme, dynamic forecasters of system-resource perfor-
mance or useability such as NWS (network weather system)
are unreliable. A scheduler in this setting cannot trust any
current or historical system-performance estimates.

We model asynchrony by assuming an oblivious adver-
sary , which determines the processor speeds at every in-
stant in time. The oblivious adversary knows the structure
of the program, but is unaware of any random choices made
by the task scheduler. This adversary models the case in
which processor speeds are independent of the execution of

the parallel program. This is a common case, since it models
loads from other users, power outages, and other influences
outside the control of the user. However, the adversary does
not model all sources of asynchrony, only those that are in-
dependent of the random choices of the program.1

Firing-Squad Scheduling.
Our scheduler uses firing-squad scheduling to assign

tasks to processors. In firing-squad scheduling, whenever
a processor becomes free, it randomly and independently
chooses some task to execute from a set of enabled tasks.
The enabled tasks are a subset of the ready tasks, i.e.,
unfinished tasks that are ready to run. Thus, in firing-squad
scheduling the only algorithmic choice is how to determine
the set of enabled tasks. Firing-squad scheduling is a form of
eager scheduling , in which the same task may be executed
simultaneously by many processors.

Firing-squad scheduling has advantages in dealing with
extreme asynchrony. Because tasks can be executed redun-
dantly, there is no need to preempt any process or migrate
it to a faster processor. Once a task begins on a proces-
sor, it is executed to completion on that processor. More-
over, firing-squad schedulers can take advantage of “bursts”
of computing speed, and firing-squad scheduling works well
even when current and past speeds are uncorrelated.

In this paper, we consider firing-squad scheduling of unit-
length tasks in an arbitrary directed acyclic graph (DAG).
We study two natural ways to select enabled sets. First, we
consider an enabled set consisting of all ready tasks. Second,
we consider a restrictive choice of enabled set, which reduces
the parallelism and locally increases the probability of re-
dundant execution. We show that, counterintuitively, limit-
ing parallelism this way can actually reduce the makespan ,
that is, the completion time of the last task.

Much previous work in asynchronous parallel computing
considers firing-squad and other eager-scheduling algorithms
(see e.g., [2, 3, 4, 5, 7, 6, 8, 25, 26, 27, 28, 30, 31]). This
prior work focuses on executing programs with full synchro-
nization barriers, frequently PRAM programs. In such pro-
grams each task in the DAG in level # + 1 has an explicit
precedence constraint with each task in level #. To the best
of our knowledge, we give the first asymptotic analysis of
firing-squad scheduling in general DAGs.

Scheduling Model and Algorithms.
We now give definitions and terminology. A parallel pro-

gram is modeled as a DAG G = (V, E) of precedence-con-
strained tasks of unit size. The vertices represent the tasks,
and the edges represent the dependencies between tasks. Let
D denote the critical-path length , that is, the length of the
longest path in G. Let W denote the total work , that is,
the number of vertices, |V |, in G. Let π1(t),π2(t), . . . ,πp(t)
denote the instantaneous speeds of the p processors at time
t. Let πave(t) denote the instantaneous average speed of
all the processors at time t, i.e., πave(t) =

Pp
i=1 πi(t)/p.

For any given schedule having makespan T , let πave denote
the average speed of the processors during the schedule, i.e.,
πave =

R T
t=0

dtπave(t)/T . The objective is to minimize the
makespan. The level of a vertex is the longest path from

1For example, processes that crash machines affect processor
speeds. An oblivious adversary could not model asynchrony
caused by these machine crashes.

the start of the DAG to that vertex. A task is ready if all its
predecessors have been executed. A ready task is critical
if its level is smallest from among all ready tasks. A ready
task is enabled in a firing-squad scheduler if it is added to
the task pool from which the processors randomly choose.

We now give the performance of greedy schedules on both
homogeneous and heterogeneous processors. In a greedy
schedule a global scheduler greedily assigns ready tasks to
processors. The scheduler assures no redundancy in this
assignment. The makespan Tp of a greedy schedule on p
identical processors is Tp ≤ W/(pπave) + D/πave [21, 12].
Because both W/(pπave) and D/πave are lower bounds on
the optimal makespan, Tp is a 2-approximation of the opti-
mal makespan [21]. More recently, the makespan was ana-
lyzed when processors have different speeds. If at all times
the scheduler runs the fastest processors (whenever k pro-
cessors must be idle, these are the k slowest), then these
same bounds apply [10, 9]. For heterogeneous processors,
the schedule is preemptive and requires migration . That
is, if the amount of available work decreases or processors
change speeds, then a task may need to be stopped on one
processor and resumed on another, currently faster, proces-
sor. In general D/πave is no longer a lower bound for het-
erogeneous processors, and even for unvarying speeds, the
best known approximation ratio is only O(log p) [16, 14].

Nonetheless, for the common case in parallel computing,
we can give better approximation ratios. Typically, the av-
erage parallelism W/D is greater than p, that is, W/p > D.
If not, then there are too many processors for the parallel
program. When W/p > D, a makespan dominated by a
Θ(W/p) term is nearly optimal, both for homogeneous and
heterogeneous processors.

Analysis of Two Firing-Squad Schedulers.
We now formally describe our scheduling problem. The

objective is to schedule a DAG G = (V, E) of precedence-
constrained tasks of unit size. The DAG is revealed on-
line. There is no preemption. Processors are asynchronous
and their speeds are determined by an oblivious adversary.
Processors choose which task to execute using firing-squad
scheduling. As described above, the combination of random-
ization and redundancy is enough to schedule without the
need for task migration.

In much of the paper, we can begin our analysis assum-
ing firing-squad scheduling on uniform-speed processors. We
then show how these results carry over to asynchronous pro-
cessors.

We analyze two variants of firing squad scheduling, All
and Level. In All, the pool of enabled tasks is the entire
set of ready tasks. In Level, the pool of enabled tasks is
only the set of critical tasks, which can be much smaller.

At first glance, it is not clear which of these two algorithms
is better or whether there is even a significant performance
difference. We now make a case for each algorithm. For
simplicity we temporarily assume that processors are syn-
chronous. The advantage of All is that in any given step,
the enabled-task pool is maximally large. Thus, the amount
of redundant execution is minimized and the amount of com-
pleted work is maximized in any given time step. The ad-
vantage of Level is that the smaller enabled-task pool only
contains tasks at the lowest level of the DAG, and as a re-
sult, progress can be made faster on the critical path. Prior
algorithms for DAG scheduling (e.g., [19]) advocate a “work-

first principle.” This principle says that it is better to amor-
tize against the total work rather than against the critical
path length. A reasonable interpretation of the work-first
principle is that All has an advantage. In fact, as we show
below, the makespan of Level is asymptotically better than
the makespan of All.

Asymptotic Performance.
We give tight analysis of the firing-squad schedulers All

and Level. We show that with high probability All has a
makespan Tp =

• Θ

„
W

pπave

«
, when

W
D

≥ p log p

• Θ

„
(log p)α W

pπave
+ (log p)1−α D

πave

«
,

when
W
D

= p(log p)1−2α, for α ∈ [0, 1]

• Θ

„
D

πave

«
, when

W
D

≤ p
log p

.

We also show that Level has a makespan of only

Tp = Θ

„
W

pπave
+ [log∗ p − log∗(pD/W)]

D
πave

«
.

The makespan is achieved with probability at least 1 − ε,
where ε = 1/poly(p) when D = O(polylog(p)) and ε =
1/ exp(p) when D = Ω(polylog(p)). We exhibit DAGs for
which this analysis is tight.

We prove these results first for uniform-speed processors.
Then we generalize for asynchronous processors. Thus, per-
haps surprisingly, the makespan can be decreased by appro-
priately throttling the available parallelism.

2. PRELIMINARIES: FIRING-SQUAD
SCHEDULINGWITH
SYNCHRONIZATION BARRIERS

This section analyzes firing-squad scheduling on DAGs with
full synchronization barriers. In such DAGs all tasks at layer
must be completed before any task at layer # + 1 begins.
Most previous bounds for firing-squad and eager scheduling
apply only to these DAGs (see e.g., [27, 4, 3, 2, 5, 25, 30,
28, 26, 7, 6, 8, 31].

By including only critical tasks in the enabled pool, Level
effectively transforms an arbitrary DAG into a synchroni-
zation-barrier DAG. As a result, much of the analysis for
Level already appears in some form in the literature. In
this paper we give a full analysis for completeness and to
introduce techniques we use later. We believe that our anal-
ysis is cleaner, more general, and more complete than any
that has appeared previously. However, our main point is
to argue that by adding up to O((W/D)2D) additional task
dependencies, we can actually reduce the makespan.

In a synchronous round of firing squad scheduling, the
probability of task A being chosen is not independent of the
probability of task B being chosen. For example, if we know
that task A was chosen by processor PA, then processor PA

did not choose task B, and therefore the probability of task
B being executed is reduced. However, the task-selection
probabilities are negatively correlated, defined as follows:
Consider a set of t random binary variables X1, . . . , Xt. We

say that the variables are negatively correlated if for all
subsets S ⊆ {1 . . . t}:

Pr

(
^

i∈S

(Xi = 0)

)
≤

Y

i∈S

Pr {Xi = 0} , and (1)

Pr

(
^

i∈S

(Xi = 1)

)
≤

Y

i∈S

Pr {Xi = 1} . (2)

Our analysis requires an extension of Chernoff bounds for
negatively correlated random variables due to Panconesi and
Srinivasan[33, 34].

Theorem 1 ([33, 34]). Let a1, a2, . . . , at be reals in [0, 1],
and X1, X2, . . . , Xt be random binary variables where Xi ∈
{0, 1}.
(i) Suppose the random variables are negatively correlated in
the 1 values (expression (2)) and E[

P
i aiXi] ≤ µ1. Then

for any δ ≥ 0

Pr

(
X

i

aiXi ≥ µ1(1 + δ)

)
≤
„

eδ

(1 + δ)1+δ

«µ1

. (3)

(ii) Suppose the random variables are negatively correlated
in the 0 values (expression (1)) and E[

P
i aiXi] ≥ µ2. Then

for any δ ∈ {0, 1}

Pr

(
X

i

aiXi ≤ µ2(1 − δ)

)
≤ e−µ2δ2/2. (4)

We now show how long it takes p synchronous processors
(with uniform speed) to execute m independent unit-length
tasks:

Theorem 2. Consider n unit-length enabled tasks ex-
ecuted on p processors using firing-squad scheduling.
If the processors run synchronously at uniform speed
π1(t),π2(t), . . . ,πp(t) = πave, then the makespan is
Θ (n/(pπave) + [log∗ p − log∗(p/n)] /πave) with probability

at least 1 − min
n
2−Θ(

√
p), 2−Θ(n/p)

o
.

Proof. We divide the execution into two phases. Phase 1
begins at time t = 0 and ends once the number of unexecuted
tasks dips below p. Phase 2 begins at the end of Phase 1
and ends once all tasks have completed.

We first show that Phase 1 contains Θ(n/p) steps with

probability at least 1 − min
n
2−Θ(p), 2−Θ(n/p)

o
. Consider a

time step t when there are m ≥ p remaining jobs. For time
step t, define 0/1-random variable

Xi =

1 if job i is executed;
0 otherwise.

Then

Pr {Xi = 0} = (1 − 1/m)p (5)

= (1 − 1/m)m·p/m

≤ e−p/m .

For any such time step t, define random variable X =
Pm

i=1 Xi

to be the total number of jobs executed during t. Then,

E [X] ≥ m
“
1 − e−p/m

”
.

Because e−x ≤ 1 − x + x2/2 when 0 ≤ x ≤ 1,

E [X] ≥ m
`
p/m − p2/2m2´

≥ p/2 .

We bound X from below, showing that in phase 1, X =
Θ(p) with very high probability. The Xi random variables
are not independent. However, they are negatively corre-
lated (see (1) and (2)):

Lemma 3. The Xi random variables, indicating selection
during a synchronous round of firing squad scheduling, are
negatively correlated.

Proof. We first prove by induction on |S| that (1) and (2)
hold. The base case that |S| = 1 holds trivially. Next we
prove the inductive step. Assume for the sake of induction
that (1) and (2) hold for all sets S such that |S| = k. Now
let S = {j}∪S′, where |S′| = k and |S| = k+1 (i.e., j '∈ S′).

First we calculate the probability that Xj = 0, given that
at least k other jobs are not executed:

Pr

(
Xj = 0

˛̨ ^

i∈S′

(Xi = 0)

)
= [1 − 1/(m − k)]p

≤ (1 − 1/m)p

= Pr {Xj = 0} .

Therefore, we prove the inductive step establishing (1) as
follows:

Pr

(
^

i∈S

(Xi = 0)

)

= Pr

(
Xj = 0

˛̨ ^

i∈S′

(Xi = 0)

)
Pr

(
^

i∈S′

(Xi = 0)

)

≤
Y

i∈S

Pr {Xi = 0} .

We perform a similar induction establishing (2) since

Pr

(
Xj = 1

˛̨ ^

i∈S′

(Xi = 1)

)
= 1 − (1 − 1/m)p−k

≤ 1 − (1 − 1/m)p

= Pr {Xj = 1} .

We now argue that firing-squad scheduling completes X =
Θ(p) jobs in a single time step with high probability when
there are m ≥ p enabled jobs in the system. There are at
most p jobs executed because there are only p processors.
Thus X = O(p). By Theorem 1, Inequality (4), Ω(p) jobs
are executed with probability at least 1 − 2−Θ(p). To in-
crease the magnitude of the exponent, consider α rounds.
In α rounds, the probability that at least Θ(p) jobs are ex-
ecuted is at least 1 − 2−Θ(αp). We explicitly represent pa-
rameter α even when it is a constant. Thus, we illustrate
the tradeoff between increased makespan and decreased er-
ror probability: a multiplicative increase in makespan yields
an exponential decrease in failure probability.

We now show that Phase 1 completes in O(1+n/p) steps
with high probability. It is sufficient to have Θ(n/p) steps

during which Θ(p) tasks are executed. We say that a group
of c rounds (a superstep) is good if at least Θ(p) jobs are
executed during that time step, and bad otherwise. The
probability that a time step is good is at least 1/2 for large
enough constant c (since it is at least 1− 2−Θ(cp)). By ordi-
nary Chernoff bounds, at least a constant fraction of αn/p
supersteps are good with probability at least 1− 2−Θ(αn/p).

Alternatively, by the union bound, the probability that
any of n/p supersteps, each of length α, fails to execute
Θ(p) tasks is at most (n/p)2−Θ(αp). Thus, with probability
1− n2−Θ(αp)/p = 1− 2(lg(n/p)−Θ(αp)), Phase 1 completes in
O(αn/p) rounds. If log(n/p) = O(p), then we set α to a
constant large enough to dominate the positive term in the
exponent. When log(n/p) = Ω(p), the direct union bound
is not useful. But in this case n/p so dominates p, that
2−Θ(n/p) is asymptotically smaller than 2−Θ(p). Therefore,
combining these two arguments, for suitably-large α, the
probability that Phase 1 completes in time Θ(1 + αn/p) is
at least 1 − min(2−Θ(αp), 2−αn/p).

We now bound the length of Phase 2. Suppose that
Phase 2 begins with n′ (n′ < p) remaining tasks. We show
that Phase 2 has length O(log∗ p − log∗(p/n′)) with prob-
ability at least 1 − 2−Θ(

√
p). More generally, we show that

for constant α, Phase 2 has length O(α [log∗ p − log∗(p/n′)])
with probability at least 1 − 2−Θ(α

√
p).

Define tower(x, i) = xx··
x

| {z }
i

for integer i ≥ 1 and define

tower(x, 0) = 1.
We prove that in time step t, as long as the number of re-

maining jobs mt ≤ p/tower(2, k) in the system is sufficiently
large (specified below) then the following holds: With prob-
ability at least 1 − 2−Θ(

√
p), in the next time step t + 1,

the number of remaining jobs is mt+1 ≤ p/tower(2, k + 1).
Moreover, with probability at least 1 − 2−Θ(α

√
p), after α

rounds in a time step, the number of remaining jobs is at
most p/tower(2, k + 1).

In time step t of Phase 2, where there are m jobs remain-
ing, we let 0/1-random variables R(t)

i be defined as follows:

R(t)
i =

1 if job i remains after step t;
0 otherwise.

Let random variable R(t) = mt+1 =
Pm

i=1 R(t)
i denote the

number of remaining jobs at the end of step t. The R(t)
i ran-

dom variables are negatively correlated since the Xi random
variables above are negatively correlated. We have:

Pr
n

R(t)
i = 1

o
= (1 − 1/mt)

p

≤ [1 − tower(2, k)/p]p

≤ e−tower(2,k) .

Thus, the expected number of remaining jobs is

E
h
R(t)

i
≤ mte

−tower(2,k),

which is bounded away from p/tower(2, k + 1) by at least a
constant factor.

Thus, as long as mte
−tower(2,k+1) ≥ √

p, we can use Cher-
noff bounds (Theorem 1) to show that with probability at
least 1 − 2−Θ(

√
p), the number of jobs in the next round,

mt+1 (which equals R(t)), is at most p/tower(2, k + 1).

If not, then the “endgame” begins. By Chernoff bounds,
with probability at least 1− 2−Θ(

√
p), the number of jobs in

the next round mt+1 ≤ √
p. We next show that if mt+1 ≤√

p, then mt+2 < 1 (and therefore 0) with probability at

least 1−2−Θ(
√

p). This last step follows by the union bound,
since Pr {Rj = 1}, the probability that any given job j sur-
vives, is at most

`
1 − 1/

√
p
´p ≤ e−

√p.
We now show how this intermediate result leads to the

claimed theorem. Let function TowerRnd(m) round m up
to the nearest value of p/tower(2, k), for integer k ≥ 0.
Let steps(m) be that particular value of k. If n′ = p,
then with probability at least 1 − 2−Θ(α

√
p), Phase 2 takes

O(α log∗ p) rounds because by the definition of log∗ p, we
have p/tower(2, log∗ p) ≤ 1. If TowerRnd(n′) < p, i.e.,
steps(n′) > 0, then Phase 2 takes only O(α [log∗ p − steps(n′)]).
If

p/tower(2, k + 1) ≤ n′ ≤ p/tower(2, k),

then

tower(2, k) ≤ p/n′ ≤ tower(2, k + 1),

which means that

log∗(p/n′) = Θ(k) = Θ(steps(n′))

as promised.
There is one final issue in computing the overall error

probability. The Phase 2 error probability may be much
larger than that of Phase 1. In this case, choose α =
Θ(n/p3/2) for Phase 2. This increases the makespan of
phase 2 to O(α lg∗ p), but this is still smaller than the Phase 1
makespan of Θ(n/p). Thus the total makespan increases by
at most a constant factor.

We now show how Theorem 2 adapts when processors
have different speeds.

Theorem 4. Consider n unit-length enabled
tasks executed on p asynchronous processors us-
ing firing-squad scheduling. The makespan is
Θ (n/(p πave) + [log∗ p − log∗(p/n)] /πave), where πave

is the average speed of the processors during the execution.

Proof. We partition the execution into stages, defined
as follows. Stage 0 begins at time 0. Each stage k ends
once there have been at least 3p units of work completed
entirely within the stage. At least p tasks are entirely exe-
cuted during the stage because at most p tasks can overlap
between stage k − 1 and stage k and at most p tasks can
overlap between stage k and stage k + 1. For the analysis,
we ignore all work done on overlapping tasks; thus, we only
take advantage of a third of the processors’ random choices.
We use an analysis similar to that of Theorem 2. For each
random execution, the probability that it is redundant is
less than or equal to the probability that it is redundant in
the synchronous case.

Theorem 5. Consider a DAG G with critical path D and
total work W executed on p asynchronous processors using
Level firing-squad scheduling. Then the makespan is

Tp = Θ

„
W

pπave
+ [log∗ p − log∗(pD/W)]

D
πave

«

where πave is the average speed of the processors during the
execution.

Proof. Let W = n1 + n2 + · · · + nD, where n# is the
number of tasks on the #th level of the DAG. We show by an
exchange argument that the makespan is maximized when
all n# are all within an additive one of each other.

We now define terms. For simplicity, we discuss the syn-
chronous case. As in the proof of Theorem 4, the syn-
chronous case is easily transformed into the asynchronous
case.

The execution is divided into phases. During phase #, the
n# tasks at level # of the DAG are executed. Let length(#)
be the length of phase #. Let et be the maximum number
of independent tasks that can be executed in t time steps
w.h.p. (see Theorems 2 and 4).

Now suppose for the sake of contradiction that there is
no way to maximize the makespan while keeping all phase
lengths within one of each other. Consider an optimal so-
lution such that the maximum difference δ between phase
lengths is minimized, i.e., a solution that minimizes δ =
maxi,j |length(i) − length(j)|. Among all such optimal solu-
tions, consider an optimal solution that minimizes the num-
ber of pairs (i, j) such that δ = |length(i) − length(j)|.

Now we consider one such pair of phases (i, j) such that
δ = length(i) − length(j). We show how to reduce ni and
increase nj so that the makespan does not decrease. Reduce
ni by the maximum amount x such that length(i) decreases
by one. If we increase nj by x, then length(j) increases by
at least one. This follows because et+1 − et is monotonically
increasing in t. Thus, we have found a new optimal solution
in which the number of maximal pairs is decreased by one,
contradicting our assumption.

3. UPPER BOUND FOR THE ALL
SCHEDULING ALGORITHM

We now analyze the All scheduling algorithm. Recall
that in All, each processor randomly chooses one task to
execute from among all enabled tasks. In any given time
step, All has less redundancy than Level, but it is glob-
ally suboptimal. This section gives an upper bound on the
makespan of All. The next section gives a matching lower
bound.

We establish the following upper bound:

Theorem 6. Algorithm All runs in time

• Θ

„
W

pπave

«
, when

W
D

≥ p log p

• Θ

„
(log p)α W

pπave
+ (log p)1−α D

πave

«
,

when
W
D

= p(log p)1−2α, for α ∈ [0, 1]

• Θ

„
D

πave

«
, when

W
D

≤ p
log p

.

This bound holds with probability 1−Dp−O(1) if D ≤ logk p
for some k and with probability 1 − 2−Θ(D) otherwise.

Proof. We consider two types of time steps. In dense
time steps the number of enabled tasks is greater than p.
In sparse time steps the number of enabled tasks is at
most p.

We bound the number of dense time steps in the following:

Lemma 7. The number of dense time steps is at most
O(αW/p) with probability at least 1 − 2−Θ(αp+αW/p).

Proof. We first show that in a given dense time step,
Θ(p) tasks are completed with probability at least 1−2−Θ(p),
and more generally, in α rounds with at least p enabled
tasks in each step, at least Θ(p) tasks are completed with
probability at least 1 − 2−Θ(αp). This claim follows from
similar arguments to those in Theorem 2. In each time step,
we have 0/1 random variables that are not independent, but
are negatively correlated. Thus, we can still use Chernoff
bounds (see Theorem 1).

As in Theorem 2, we define dense steps as good and bad,
where a step is good if Θ(p) tasks are completed. Each
step is good with at least a constant probability. There-
fore, by ordinary Chernoff bounds, in Θ(αW/p) time steps,
there are at least W/p good time steps, with probability
at least 2−Θ(αW/p). After Θ(W/p) good steps, all work is
complete.

We now consider only the sparse execution , that is, the
execution with all dense time steps removed. We partition
the sparse execution into phases, defined so that in phase j
all the critical jobs in the DAG have depth j. Observe that
the number of critical tasks in a phase is monotonically de-
creasing, whereas the number of enabled tasks can increase
or decrease.

We first give this claim, which will be useful below:

Lemma 8. Let x1, x2, . . . , xt ≥ 0 be constrained so thatPt
i=0 xi = K for K ≥ 0. Function f(x1, . . . , xt) =

e−p/x0e−p/x1 . . . e−p/xt is maximized when x0 = x1 = · · · =
xt = K/t.

Proof. We maximize function f(x1, . . . , xt) =
e−p/x0e−p/x1 . . . e−p/xt by minimizing function
g(x1, . . . , xt) = 1/x0 + 1/x1 + · · · + 1/xt.

We will show that for any two variables xi and xj and any
values of their positive sum Kij = xi + xj , the sum 1/xi +
1/xj is minimized when xi = xj . Thus, we can minimize
1/xi + 1/xj = 1/xi + 1/(Kij − xi) for any positive value
of Kij . Differentiating and setting to 0 we obtain −1/x2

i +
1/(Kij − xi)

2 = 0. The solution where both variables are
positive is xi = xj = Kij/2, as promised. Taking a second
derivative we obtain 2/x3

i + 2/(Kij − xi)
3, which is positive

when xi = xj = Kij/2, showing that we have a minimum.
Since for all pairs of values and possible sums, the sum of

multiplicative inverses is minimized when the values are are
equal, the lemma follows.

We now bound the probability that a given critical task
survives for t time steps. We give this probability as a func-
tion of the number of enabled tasks during the t steps.

Lemma 9. The probability that a critical job survives for
t (sparse) steps after the beginning of phase # in the sparse
execution, given that there are ri enabled tasks in the ith
step, for i = 1 . . . t, is at most e−p/r1e−p/r2 · · · e−p/rt .

Proof. The probability that a given critical job
survives for t (sparse) steps after the beginning of
a phase is the probability that it survives the first
round, times the probability that it survives the sec-
ond, times the probability that it survives the third,
etc., which is (1 − 1/r1)

p (1 − 1/r2)
p . . . (1 − 1/rt)

p ≤
e−p/r1e−p/r2 . . . e−p/rt .

Corollary 10. The probability that phase # of the sparse
execution lasts more than t steps, given that there are ri

enabled tasks in the ith step, for i = 1 . . . t, is at most

pe−t2p/(
Pt

i=1 ri).

Proof. By Lemma 9, the probability that a given crit-
ical task survives for t time steps, given that the number
of enabled tasks in step 1 through t is r1 through rt, re-
spectively, is at most e−p/r1e−p/r2 · · · e−p/rt . By Lemma 8,
this probability is maximized when all ri are equal, mean-

ing that the probability is at most e−pt2/(
Pt

i=1 ri). By the
definition of a sparse step, there are at most p critical tasks
at the beginning of any round. By the union bound, the
probability that any of the at most p critical task survives

is at most pe−pt2/(
Pt

i=1 ri), which is an upper bound on the
probability that the round continues after t steps.

Corollary 11. Suppose that for t time steps starting
from the beginning of phase #, the average number of en-
abled tasks per time step is r. If t ≥ r(c + 1) ln p/p, then all
critical tasks are completed (meaning phase # has finished)
with probability at least 1 − p−c.

Proof. This corollary follows immediately from Corol-
lary 10 by plugging in values:

Pr {Still in phase #} ≤ pe−pt2/(
Pt

i=1 ri)

= pe−pt/r

≤ pe−p[r(c+1) ln p/p]/r

= pe−(c+1) ln p

= p−c .

The following lemma relates the total number of enabled
tasks in a round to the total number of enabled tasks in each
time step, summed over all time steps. (That is, suppose
that a task gets a red ticket when it is first enabled and
gets a blue ticket for each step that it is enabled. Then the
lemma relates the number of red tickets to the number of
blue tickets.)

Lemma 12. Suppose that in a phase of length t, there are
a total of K tasks enabled during at least one step of the
phase. Then with probability at least 1 − e−Θ(

√
p),

tX

i=1

ri = Θ(K).

Proof. The probability that a given enabled task is ex-
ecuted in any sparse time step is at least 1 − (1 − 1/p)p ≥
1 − 1/e because, by definition, a sparse steps contains at
most p enabled tasks.

Suppose that there are fewer than
√

p enabled tasks.
Then, the probability that a given task is not executed is
at most

(1 − 1/
√

p)p ≤ e−
√

p .

Therefore, by the union bound, the probability that even
one task is not executed is at most

√
pe−

√
p, which is expo-

nentially small, as promised.

Now suppose that there are p ≥ r ≥ √
p enabled tasks

in a given time step. We now give the setup for Chernoff
bounds, similar to that in Theorem 2, showing that at least a
constant fraction of enabled tasks are successfully executed,
with very high probability. The probability that a given
task is executed is at least 1− 1/e. Therefore, the expected
number of executed tasks is at least r(1−1/e). Let Xi be the
0/1-random variable which is 1 if task i is executed during
the time step and 0 otherwise. Now define X =

Pr
i=1 Xi to

be the total number of executed jobs during the time step.
Then E [X] ≥ r(1 − 1/e).

The Xi variables are not independent, but they are neg-
atively correlated, which is a sufficient condition for us-
ing Chernoff bounds (see Theorem 1). Plugging in Cher-
noff bounds with δ = 1/2, the probability that there are
fewer than E [X] /2 critical jobs executed is at most e−

√
p/32,

which is also exponentially small in
√

p.

Now given a fixed budget K of enabled jobs for a phase,
we want to maximize the time spent in a single phase. We
show that regardless of how the jobs are distributed per
time step, after O(

p
K log p/p) steps, all critical jobs are

completed, meaning that the phase has ended.

Lemma 13. Suppose that a phase contains at most
K enabled jobs. Then the phase contains at most

O
“lp

K log p/p
m”

time steps with probability 1 − p−O(1).

Proof. We exhibit a value of t such that the probability
that the phase is still alive after t time steps is small. Let K
be the total number of enabled tasks in all time steps and
let K′ be the total number of enabled jobs per time step,
summed over all time steps. (Thus, K′ counts an enabled
job once for each time step that it is in the system, and
K counts the number of “tickets” as described above.) By
Lemma 12, K = Θ(K′) with probability at least 1−e−Θ(

√
p).

By Corollary 11, with probability at least 1−p−c, after t ≥
(K′/t)(c + 1) ln p/p time steps, all critical jobs are finished.
Solving for t, it suffices to have t2 = Θ(K(c + 1) ln p/p) or

to have t = Θ
“lp

(c + 1)K ln p/p
m”

. Therefore, after t =

Θ
“lp

(c + 1)K ln p/p
m”

steps with a budget of K enabled

jobs, the phase has completed.

We now consider multiple phases. For the next few lem-
mas, we assume that the critical path D is polynomial in
p, and then we remove this assumption. Define the sparse
makespan to be the total number of sparse time steps in
the execution. Suppose that phase i contains Ki enabled
tasks, for i = 1 . . . D. Then by using Lemma 13 and sum-
ming over all phases, we see that the sparse makespan is at
most

O

DX

i=1

“
1 +

p
Ki log p/p

”!
(6)

with probability 1−Dp−O(1). We wish to maximize (6) over
all choices of Ki. To do so, we use the following lemma,
which follows from the Cauchy-Schwartz inequality:

Lemma 14. The function
Pn

i=1

√
xi subject to

Pn
i=1 xi =

X is maximized when x1 = x2 = · · · = xn = X/n.

Proof. The Cauchy-Schwartz inequality says that

|u · v| ≤ ‖u‖ · ‖v‖,

or equivalently,

nX

i=1

uivi ≤

vuut
nX

i=1

u2
i

vuut
nX

i=1

v2
i .

It suffices to let vi = 1 and ui =
√

xi and the claim fol-
lows.

The next lemma follows directly from (6) and Lemma 14.

Lemma 15. Let K = min {pD, W}. Then the sparse

makespan is at most O
“p

KD log p/p
”

with probability 1 −
Dp−O(1).

Now we can use Lemmas 7 and 15 to bound the makespan:

Lemma 16. Let K = min {pD, W}. Then the makespan

is at most O
“
W/p +

p
KD log p/p

”
with probability 1 −

Dp−O(1).

Now we show how to achieve better bounds as long as
D is at least polylogarithmic in p. As before we divide into
dense steps and sparse steps. By Chernoff bounds, the num-
ber of dense steps is bounded as in Lemma 7. We now divide
the sparse steps into phases of length polylogarithmic in p.
Each phase has length so that the critical path should de-
crease by at least one with probability at least 1/poly(p) (see
Lemma 13). A phase is good if the critical path does de-
crease, and it is bad otherwise. Now we can apply Chernoff
bounds, showing that at least a constant fraction of phases
are good. The probability of error is at most 2−Θ(D), and
therefore we get the claimed makespan with probability at
least 1 − 2−Θ(D). This is superior to the earlier bounds as
long as D is at least polylogarithmic in p.

4. LOWER BOUND FOR THE
ALL SCHEDULING ALGORITHM

In this section we give a matching lower bound for the
makespan of All. Our approach is to exhibit a family
of “shark-tooth graphs,” which match the performance de-
scribed in Section 3.

Figure 1 illustrates a shark-tooth graph . Successors
are above their ancestors in this example. A shark-tooth
graph is built from several components. First is a series-
parallel DAG. which we call the jaws of the shark-tooth
graph. The first jaw includes a node u1, which is the
root of the DAG. For parameter y to be set later, this
node u1 has y immediate successors u2,1, u2,2, . . . , u2,y called
spindle elements or spindle nodes, also part of the first
jaw. (The lower-bound construction will be most interesting
when Ω(p/ log p) ≤ y ≤ O(p).) Each of these y successors
is a direct predecessor of a single node u3, which is part of
the second jaw . Node u3 has y immediate successor spin-
dle elements u4,1, u4,2, . . . , u4,y , also part of the second jaw.
These nodes are predecessors to the third jaw, fourth jaw,
etc, until node uD, the deepest node in the DAG.

Each jaw also has “shark teeth.” In shark dentistry, when
one shark tooth falls out, there are many backup teeth be-
hind, which move forward to fill the gap. In the shark-tooth

x

D

jaw tooth

y spindle elements

y

Figure 1: A shark-tooth DAG. Precedence relations
are bottom up, so successors are above (or to the
right of) their predecessors.

graph, each shark jaw holds y teeth at a time. Behind each
tooth are x backup teeth, where x is another parameter to
set later. More specifically, there are shark-tooth paths of
length x of shark teeth, extending out of nodes u2i+1 for all
i < (D − x)/2. (We need this restriction so that D truly is
the critical-path length.)

We now describe how this graph G would be executed.
Assume for simplicity that all processors run at the same
speed π so that a processor executes one job per time step.
Consider the time step t during which node u2i−1, the be-
ginning of the ith jaw, is executed. In the next time step,
t + 1, all y of the immediate (spindle) successors in the jaw,
u2i,1 . . . u2i,y , are enabled and the first tooth of each of the
y shark-tooth paths of u2i−1 is also enabled. The rest of the
spindle nodes in the jaw u2i,1 . . . u2i,y are predecessors of jaw
i + 1. In contrast, the shark-teeth paths are predecessors of
no other parts of the graph, and it is therefore less urgent
for the shark-teeth paths to be executed rapidly.

For fast firing-squad execution, therefore, the spindle
nodes u2i,j of the jaw should be completed with higher pri-
ority, as analyzed in Section 2, yielding log∗ p multiplicative
overheads or better. However, the sharks teeth nodes are
distracting to the processors, reducing the probability that
the critical spindle jaw nodes are executed in a given round,
and as we show, asymptotically increasing the makespan.

In the following we give a lower bound s on the number of
steps needed for all of u2i,1 . . . u2i,y (the rest of jaw i) to be
executed (both expected and w.h.p.), under the assumption
that none of the y shark-teeth paths are fully executed. In
order to guarantee the condition that none of the shark-
teeth paths are fully executed, we set one of the parameters,
requiring that x ≥ s.

Condition 1. Let s be the target lower bound on the
number of steps needed to execute each jaw. We set x ≥ s.
This ensures that none of the y shark-teeth paths will com-
plete before s rounds.

We can now bound the number of jaw nodes that are
completed in a single round.

Lemma 17. Suppose that at time step t there are m un-
executed vertices in jaw i. Then at time step t + 1 there are
at least 5−p/ym unexecuted vertices in jaw i, with probability

at least 1 − 2−Θ(4−p/ym).

Proof. Because there are y shark-tooth paths, regardless
of how many jaw nodes remain, the probability that in a
single time step, a given task u2i,j is not chosen is at least

Pr {u2i,j not executed} ≥ (1 − 1/y)p .

Now, as in earlier proofs, we describe the problem in terms
of 0/1-random variables. Consider the beginning of time
step t, when there are m unexecuted vertices in the jaw.
We define 0/1 random variables Ri as follows:

Ri =

1 if job i remains after step t;
0 otherwise.

We let random variable R =
Pm

i=1 Ri denote the total num-
ber of remaining jobs at the end of step t. If there are m
unexecuted vertices in the jaw in time step t, then the ex-
pected number of remaining vertices in time step t+1, E [R],
is at least

E [R] = m(1 − 1/y)p

= m(1 − 1/y)y·p/y

> 4−p/ym.

We now use Chernoff bounds. The Ri random variables
are not independent, but they are negatively correlated (see
the proof of Theorem 2), thus permitting an application
of Theorem 1. Then the probability that R ≤ 5−p/ym is

less than 2−Θ(4−p/ym). (Here 5 could be replaced by any
constant greater than 4.)

Lemma 18. Consider the time step t during which node
u2i−1, the beginning of the ith jaw, is executed. With proba-
bility at least 1− 2−Θ(

√
p), at least Ω(1+ y log y/p) steps are

required to execute the tasks in jaw i.

Proof. By Lemma 17, we are reducing the number of
jaw nodes by a factor of at most 5p/y in each round. In
order to get better error bounds, we consider how long it
takes until there are fewer than O(

√
p) jobs remaining, thus

obtaining error probabilities that are at most 2−Θ(
√

p).
The number of rounds is at least

s = Ω(log5p/y y)

= Ω(log y/ log(5p/y))

= Ω(y log y/p). (7)

We can also claim that s ≥ 1 since each jaw is a 2-level
DAG. Thus, we obtain the desired bounds.

We now explain why the lower bound is most interest-
ing when y = Ω(p/ log p). When y = cp/ log p, for suffi-
ciently small constant c, then all of the tasks u2i,1 . . . u2i,y ,
the remainder of jaw i, are executed in a single round with
probability at least 1 − 1/poly(p); each task is in fact exe-
cuted simultaneously by Θ(log p) processors. Consequently,
x = Θ(1).

We are now ready to set the parameters x, the length
of the shark-tooth path, and y, the number of shark-tooth
paths per jaw. Our objective is to maximize s subject to
Condition 1. We call such shark-tooth graphs maximal .

For the sake of intuition, We begin with a special case, as
described in the following lemma:

Lemma 19. Consider a shark-tooth graph that is con-
strained such that xy = Θ(p). Then s = x, a lower bound on

the number of steps necessary to execute a jaw, is maximized
when s = x = Θ(

√
log p) and y = Θ(p/

√
log p).

Proof. From Lemma 18, there exists some constant c
such that

cx ≥ y log p/p.

Moreover, x and y are constrained such that

xy = p.

Substituting for x we obtain

cp2/ log p ≥ y2,

and the constraint on y follows by taking square roots.

Now we give the full tradeoff of x and y:

Lemma 20. Consider a shark-tooth graph that is con-
strained such that xy = Θ(p log2β−1 p), for any β. Then
s = x, the lower bound on the number of steps necessary to
execute a jaw, is maximized when s = x = Θ(logβ p) and
therefore y = Θ(p logβ−1 p).

Proof. As in Lemma 19, the objective is to maximize x.
By Lemma 18, there exists some constant c such that

cx ≥ y log p/p.

Moreover, x and y are constrained such that

xy = p log2β−1 p.

Substituting for x we obtain

cp2 log2β−2 p ≥ y2,

and taking square roots, we obtain

y ≤
√

cp logβ−1 p,

giving the promised bounds.

We now calculate the total work W , the critical path D,
and the makespan Tp for shark-tooth graphs with different
values of β. There are three important cases: (1) β ≤ 0, (2)
0 ≤ β ≤ 1, and (3) β ≥ 1. As we will see, Case (2) is the
important case.

Theorem 21. Consider a maximal shark-tooth DAG
when xy = Θ(p log2β−1 p).

• If β ≤ 0, the makespan is Tp = Θ(D/π).

• If 0 ≤ β ≤ 1, then the makespan is Tp =
Ω(D logβ p/π) = Ω(W (log1−β p)/pπ).

• If β ≥ 1, then the makespan is Tp = Ω(W/pπ).

Proof. Case (1) follows from Lemma 18. In this case the
makespan is just Θ(D/π), which matches the Graham lower
bound of D/π. For Case (2), the total work W is the sum of
the work on all the jaws plus the work on shark-tooth paths,
which is

W = Θ(Dyx)

= Θ(Dp log2β−1 p).

The makespan is bounded below by the time to execute
a jaw, Ω(x), times the number of jaws, Θ(D), which by
Lemma 20 is

Tp = Ω(Dx/π)

= Ω(D logβ p/π) .

Expressed in terms of the total work, W , the makespan is

Tp ≥ Ω(W (log1−β p)/pπ). (8)

Case (3) is just the Graham lower bound. Observe that (8)
still holds, but is weaker than the Graham bound.

5. RELATED WORK
There are many papers in the literature that use eager
and firing-squad scheduling. The principal idea of eager
scheduling to run code so that parallel tasks are idempo-
tent, that is, so that more than one processor can execute
the same task at the same time. Thus, the computation is
less likely to be delayed by a processor failing or running
slowly. This technique was first proposed as an algorithmic
method for transforming standard parallel (often PRAM)
programs, which assume synchronization barriers, to run on
hardware composed of asynchronous or fault-prone proces-
sors. See, e.g., [2, 3, 4, 5, 25, 26, 27, 28, 30] for examples of
such transformations. Most of these algorithmic results fo-
cus on tightly coupled parallel programs, such as PRAM al-
gorithms, or programs with synchronization barriers across
all threads, unlike the current paper. Eager scheduling has
subsequently been implemented in many parallel systems
(see e.g., [7, 6, 8, 31]), ranging from networks of workstations
to metacomputing and grid computing. More recent well-
known distributed systems for exploiting idea computing cy-
cles also benefit from eager scheduling and variations. Ex-
amples of such systems include SETI@home [1], the Globus
Project [18], and grid-computing systems.

Two of the most notable research areas dealing with run-
ning parallel programs on processors of different speeds are
asynchronous parallel computing and scheduling on related
processors. Some asynchronous parallel computing papers
include [3, 4, 17, 20, 24, 25, 26, 27, 28, 29, 30, 32]. In many
of these works, the processor speeds are determined by an
oblivious adversary, as in this paper. As we mentioned, most
of the algorithmic work deals with tightly coupled parallel
programs and parallel programs with synchronization barri-
ers, as opposed to more general multi-threaded programs.

Executing a parallel program on processors of different
speeds is also a common problem in scheduling theory. In
this field there is an underlying assumption that the pro-
cessors are related, i.e., they have different speeds but the
speeds do not change. Because this problem is NP-hard [35]
even for homogeneous processors, the scheduling commu-
nity has concentrated on developing approximation algo-
rithms for the makespan. Early papers introduce O(

√
p)-

approximation algorithms [22, 23], and more recent papers
propose O(log p)-approximation algorithms [15, 16, 13, 14].
These scheduling algorithms are unlikely to be directly ap-
plicable to running parallel programs because most of the
algorithms are offline, only work for processors with un-
changing speeds, require full-knowledge of the state of the
system, and are too work-intensive. Moreover, the schedul-
ing algorithms are not designed for the common case that
W/P * D, and therefore optimize for uncommon cases.

Finally the quality of many of the scheduling algorithms
are measured using the approximation ratio. Even in the
homogeneous setting , i.e., when all processors run at the
same speed, it is known that the approximation ratio may
be misleading [11] by a factor as large as 2.

One exception to many of these rules is recent work on
how to schedule Cilk multithreaded DAGs on different-speed
processors [9, 10]. This result considers more general DAGs,
optimizes for the common case that W/p * D, and con-
siders processors that change speeds. However, the recent
work does not consider highly variable processor speeds de-
termined by an adversary, but rather more gently changing
speeds where it makes sense for a processor to know its own
speed.

6. CONCLUSION
Conventional wisdom in the parallel-computing commu-

nity states that the extra dependencies caused by synchro-
nization barriers lead to slower running times and should
be avoided. We have proved that in firing-squad (eager)
scheduling, this is not necessarily the case. Given an ar-
bitrary DAG of precedence constraints, revealed online, we
have proved that, somewhat surprisingly, adding a poten-
tially dense set of dependencies can be provably advanta-
geous. Specifically, in the worst case, with high probability,
forcing synchronization barriers across all levels of the DAG
gives an asymptotically shorter makespan compared to the
schedule with no artificially-added dependencies. In par-
ticular, there is an advantage when the DAG has sufficient
parallelism relative to the number of processors, but not
overwhelming parallelism.

7. REFERENCES
[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,

and D. Werthimer. Seti@home: an experiment in
public-resource computing. Commun. ACM,
45(11):56–61, 2002.

[2] Y. Aumann, M. A. Bender, and L. Zhang. Efficient
execution of nondeterministic parallel programs on
asynchronous systems. In Proceedings of the 8th
Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 270–276, 1996.

[3] Y. Aumann, M. A. Bender, and L. Zhang. Efficient
execution of nondeterministic parallel programs on
asynchronous systems. Information and Computation,
139(1):1–16, 25 Nov. 1997.

[4] Y. Aumann, Z. M. Kedem, K. V. Palem, and M. O.
Rabin. Highly efficient asynchronous execution of
large-grained parallel programs. In Proceedings of the
34th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 271–280, 1993.

[5] Y. Aumann and M. O. Rabin. Clock construction in
fully asynchronous parallel systems and pram
simulation. Theoretical Computer Science, 128:3–30,
1994.

[6] A. Baratloo, P. Dasgupta, V. Karamcheti, and Z. M.
Kedem. Metacomputing with milan. In Proceedings of
the Eighth Heterogeneous Computing Workshop
(HCW), page 169, 1999.

[7] A. Baratloo, P. Dasgupta, and Z. M. Kedem. Calypso:
A novel software system for fault-tolerant parallel
processing on distributed platforms. In Proceedings of

the 4th International Symposium on High Performance
Distributed Computing (HPDC), pages 122–129, 1995.

[8] A. Baratloo, M. Karaul, Z. M. Kedem, and
P. Wijckoff. Charlotte: metacomputing on the web.
9th International Conference on Parallel and
Distributed Computing Systems (PDCS), 1996.

[9] M. A. Bender and M. O. Rabin. Scheduling Cilk
multithreaded computations on processors of different
speeds. In Proceedings of the 12th Annual ACM
Symposium on Parallel Algorithms and Architectures
(SPAA), pages 13–21, July 2000.

[10] M. A. Bender and M. O. Rabin. Online scheduling of
parallel programs on heterogeneous systems with
applications to Cilk. Theory of Computing Systems
Special Issue on SPAA00, 35:289–304, 2002.

[11] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. In
Proceedings of the 35th Annual Symposium on
Foundations of Computer Science (FOCS), pages
356–368, Santa Fe, New Mexico, Nov. 1994.

[12] R. P. Brent. The parallel evaluation of general
arithmetic expressions. Journal of the ACM,
21(2):201–206, April 1974.

[13] C. Chekuri and M. A. Bender. An efficient
approximation algorithm for minimizing makespan on
uniformly related machines. In Proceedings of the 6th
Conference on Integer Programming and
Combinatorial Optimization (IPCO), volume 1412,
pages 383–393, 1998.

[14] C. Chekuri and M. A. Bender. An efficient
approximation algorithm for minimizing makespan on
uniformly related machines. Journal of Algorithms,
41:212–224, 2001.

[15] F. A. Chudak and D. B. Shmoys. Approximation
algorithms for precedence-constrained scheduling
problems on parallel machines that run at different
speeds (extended abstract). In Proceedings of the
Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 581–590, New Orleans,
Louisiana, 5–7 Jan. 1997.

[16] F. A. Chudak and D. B. Shmoys. Approximation
algorithms for precedence-constrained scheduling
problems on parallel machines that run at different
speeds. Journal of Algorithms, 30(2):323–343,
February 1999.

[17] R. Cole and O. Zajicek. The expected advantage of
asynchrony. In Proc. of the ACM Symposium on
Parallel Architectures and Algorithms, pages 85–94,
1989.

[18] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of
Supercomputer Applications and High Performance
Computing, 11(2):115–128, 1997.

[19] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and
Implementation (PLDI), pages 212–223, 1998.

[20] P. B. Gibbons. A more practical PRAM model. In
Proc. of the 1st ACM Symposium on Parallel
Architectures and Algorithms, pages 158–168, June
1989.

[21] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics,
17(2):416–429, Mar. 1969.

[22] J. M. Jaffe. An analysis of preemptive multiprocessor
job scheduling. Mathematics of Operations Research,
5(3):415–421, Aug. 1980.

[23] J. M. Jaffe. Efficient scheduling of tasks without full
use of processor resources. Theoretical Computer
Science, 12:1–17, Aug. 1980.

[24] P. C. Kanellakis and A. A. Shvartsman. Efficient
parallel algorithms can be made robust. Distributed
Computing, 5(4):201–217, 1992.

[25] Z. M. Kedem, K. V. Palem, M. O. Rabin, and
A. Raghunathan. Efficient program transformation for
resilient parallel computation via randomization. In
Proceedings of the 24th Annual ACM Symposium on
the Theory of Computing (STOC), pages 306–317,
May 1992.

[26] Z. M. Kedem, K. V. Palem, A. Raghunathan, and
P. G. Spirakis. Combining tentative and definite
executions for very fast dependable parallel
computing. In Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing (STOC), pages
381–390, May 1991.

[27] Z. M. Kedem, K. V. Palem, and P. G. Spirakis.
Efficient robust parallel computations. In Proceedings
of the 22rd Annual ACM Symposium on Theory of
Computing (STOC), pages 138–148, May 1990.

[28] S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis,
and M. Yung. Robust parallel computations through
randomization. Theory of Computing Systems,
33(5/6):427–464, 2000.

[29] G. Malewicz. Parallel scheduling of complex dags
under uncertainty. In Proceedings of the 17th Ann.
ACM Symp. Parallelism in Algorithms and
Architectures (SPAA), pages 66–75, 2005.

[30] C. Martel, A. Park, and R. Subramonian.
Asynchronous PRAMs are (almost) as good as
synchronous PRAMs. In Proceedings of the 31st
Annual Symposium on the Foundations of Computer
Science (FOCS), pages 590–599, 1990.

[31] M. O. Neary and P. Cappello. Advanced eager
scheduling for java-based adaptive parallel computing:
Research articles. Concurrency and Computation:
Practice and Experience, 17(7-8):797–819, 2005.

[32] N. Nishimura. Asynchronous shared memory parallel
computation. In Proc. of the 2nd ACM Symposium on
Parallel Architectures and Algorithms, pages 76–84,
1990.

[33] A. Panconesi and A. Srinivasan. Randomized
distributed edge coloring via an extension of the
Chernoff-Hoeffding bounds. SIAM J. Comput.,
26(2):350–368, 1997.

[34] A. Srinivasan. Distributions on level-sets with
applications to approximation algorithms. In
Proceedings of the 42 Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages
588–597, 2001.

[35] J. Ullman. NP-complete scheduling problems. Journal
Computing System Science, 10:384–393, 1975.

